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SUMMARY 14 CONCLUSIONS 

This paper considers distributed multisensor applications, 
and finds redundant configurations that minimize system 
weight or cost while insuring system dependability. Given 
choices among different component types, fulfilling the 
system’s operational requirements but having different 
dependability parameters and per item cost, two heuristics, 
one non-monotone (tabu search) and one monotone 
(simulated annealing), are used to find configurations that 
minimize the chosen cost metric. The search is limited to a 
surface delimiting the solution space region fulfilling system 
dependability requirements. Experimental results are 
presented with cost savings of 20% compared with the least 
expensive system consisting of only one component type. A 
test case compares results from the two methods with an 
exhaustive search to verify that the heuristics provide 
reasonable solutions. 

1. INTRODUCTION 

Redundant systems achieve fault tolerance by duplication 
of components. Feasibility requires attention be paid to both 
reliability bounds and cost. The Byzantine Generals Problem 
concerns making unanimous decisions in the presence of 
arbitrary errors in less than one third of the components (Ref. 
13). Ref. 2 provides a fuil discussion of this topic. Sensor 
fusion systems make decisions based on data from multiple 
sensors and glean the best interpretation from noise-corrupted 
data of limited resolution. Figure 1 illustrates a one 
dimensional problem, where algorithms in Refs. 9,16 tolerate 
failures of up to one half of the sensors. Both Byzantine 
Generals Problem and sensor fusion are examples of fault 
masking. The information theoretical basis of fault masking 
is explored in Ref. 11 .  Brooks and Iyengar explain the 
relationship between sensor fusion and the Byzantine 
Generals problems in Refs. 4 3 .  Note that sensor fusion and 
Byzantine agreement aid in designing reliable systems which 
function correctly when more than half (one-dimensional 
sensor fusion) or more than two-thirds (Byzantine 
Agreement) of the individual components function correctly. 
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Figure 1 These sensors function correctly if the data is 
within 0.5 of the real value. 

1.1 Morivation 

Our motivation comes from the sensor integration 
paradigm, which increases the ability of systems to interact 
with their environment by combining independent sensor 
readings into logical rlepresentations (Refs. 8,15). Sensor 
integration of highly redundant systems offers these 
advantages: 1) Multiple inaccurate sensors can cost less than 
a few accurate sensors. 2) Sensor reliability may increase 
(Ref. 1). 3) Sensor efficiency and performance can be 
enhanced. 4) Self-calibration can be attained (Ref. 24). 
Highly redundant sensors are used in key areas. Defense 
related applications include missile defense, global 
positioning, autonomous, land vehicles, pilot assistance, and 
command and control (Refs. 15,17). Intelligent 
manufacturing requires distributed systems with independent 
sensors (Ref. 8). Systems use distributed sensors for 
applications like Desert Storm (Ref. 21), and controlling 
smuggling (Ref. 10). These designs depend on the “best 
possible trade-off at least cost” (Ref. 17). 

An open question is sensor selection to improve 
reliability and resolve resource allocation conflicts (Ref. 24). 
An approach to sensor selection using system cost and sensor 
accuracy is given in  @.ef. 1). Our paper presents a more 
general approach using dependability instead of accuracy. We 
consider redundancy among heterogeneous components. The 
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use of off-the-shelf components to reduces system complexity 
and cost, particularly for sensors (Refs. 14,25). A draft 
standard for sensor interfaces has been proposed by the 
National Institute of Standards and Technology (Ref. 18). 
Acceptance of this standaid will allow heterogeneous sensor 
redundancy that does not effect system complexity. 

1.2 Nomenclature and Notation List 

The following variables are used in this report: 
J - Total number of component types under consideration 
N - Total number of components in a given system which 

satisfies dependability constraints. 
Ni - Number of components of type i needed to create a 

system which satisfies dependability constraints when 
only components of type i are used 

ci - Unit cost of component type i 
DC - Difference in cost between two system configurations 
t - Temperature variable used by simulated annealing. 
x - System configuration vector (x],x2 ..., xc ....,xJ) 
xi - Number of components of type i in a given system which 

r(t) - Reliability function giving the probability that the 

a - Steady state component availability. 
fix) - Fitness function giving the relative merit of system 

satisfies the dependability constraints. 

component fails after mission time t 

configuration x 
In this report we assume: 

1) An adequate reliability or availability statistic is known for 
each component type. 
2) Component failures are statistically independent and 
dependability is between 0.5 and 1. 
3) A cost metric ci is known for each component type. 

1.3 Problem Statement and Report Layout 

per item cost, we attempt to obtain the configuration which 
meets the dependability requirements with the lowest system 
cost. Cost may be dollar amounts or weight. The dual 
problem, maximizing dependability within cost bounds, can 
be solved by making minor modifications. 

The paper is organized as follows: Section 2 presents the 
mathematics required for this problem. Section 3 gives two 
heuristic search algorithms for finding approximate answers. 
We discuss results illustrating the quality of the heuristics in  
Section 4. Final discussion is in Section 5. 

2. DEPENDABILITY CONSTRAINTS 

Figure 2 shows a Markov chain model of our process (for 
reliability evaluation, the repair rate m is zero) where N 
identical components fail independently which can be solved 
to obtain the reliability or availability parameter. 
Alternatively, a combinatorial approach can derive identical 
results. Assume each component has an identical probability 
of success r(t). Let q(t) = 1 - rft). The assumption of statistical 
independence allows Bernoulli's law to find the probability of 
i out of N components working at time t as: 

The reliability of the system is the sum of the probabilities for 
the states with i equal to N to LN/~J+I since the system is 
functional only when more than N/2 components are 
operational. We describe a model with two types of 
components, where the total number of components N is 
equal to the number of components of type 1 (XI) plus the 
number of components of type 2 (x2), and then a generalized 
version is considered. 

We characterize components by dependability statistics 
and unit cost. Our method can use statistics based on several 
existing models. The dependability statistics used depend on 
the exact problem. If the design is concerned with mechanical 
failure, mean-time-to-failure and mean-time-to-repair are 
adequate. If transient or intermittent errors are considered, 
statistics must be available for fault arrival and duration. For 
tractability and consistency with reliability literature our 
example uses exponential distributions for component failure 
and repair. Equations are presented for systems where over 
50% of all components must be functional, this can be 
changed to any other percentage by replacing ND as 

I 
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necessary. 
Dependability is a generic term for either reliability, the 

probability that the system is working at a given mission 
time, or availability, the percentage of time the system is 
functional. When a system with strict dependability Figure 2 Markov chain model of a system which tolerates 
requirements uses Byzantine agreement or sensor fusion, a 
choice is made between component types which may be used 
redundantly to mask errors. Given a choice between various 
modules, each with different dependability parameters and 

up to 50% component failure. 
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Assume cases where no components of type 1 have 
failed, one component of type 1 has failed, etc., up to the case 
where all X I  components of type 1 have failed. The cases are 
disjoint and the sum of their probabilities is one. They 
partition the space giving a reliability expression at time f in 
terms of r l ( t )  component type 1 reliability, and r2(f) 
component type 2 reliability. 

+ I - L  

Equation (2) can be extended to more than two types of 
components. A combination of J different types of 
components requires J levels of summations in the format of 
(2). Ref. 3 explains methods for performing these calculations 
efficiently. 

The extension of equation (2) to 9 dimensions determines 
if a system fulfills dependability requirements. We use this to 
find the configuration that fulfills the dependability criteria 
with minimum cost. We consider each combination of J 
types of components as a point in a discrete J-dimensional 
space, described by a J-dimensional vector ( x l , x 2  ..., xJ) .  
Each position in the vector corresponds to the number of 
components of a given type in the configuration. If the choice 
is made among three types, the combination of 2 components 
of type 1, 25 components of type 2, and none of type 3 
corresponds to point (2, 25, 0). Equation (2) determines 
which points in the J-dimensional space fulfill the 
dependability requirements. Since each component type has a 
known cost it is possible to determine the system cost. If type 
i has cost c? the cost of combination (2,25,0) is 2*cl + 25*c2 
+ O*c3. We must minimize: 

(3) 

This is a combinatorial optimization problem which can 
not be solved by known mathematical programming 
techniques such as integer programming. These techniques 
are inappropriate because equation (2) which defines whether 
or not a given combination fulfills dependability requirements 
is non-linear (Ref. 20). We formulate the problem as a search 
for the optimal point in a J-dimensional discrete solution 
space where J is the number of types under consideration. 
The region with valid solutions is known as the feasible set in 
the solution space (Ref. 23). We determine a surface which 
divides the points containing combinations in the feasible set 
from the rest of the J-dimensional space. This surface 
restricts our search for the optimal configuration to a small 
portion of all configurations. 

Lemma 1. An optimal answer must lie on the surface 
dividing the J-dimensional problem space into two regions: 
one region containing points which either satisfy the 
dependability requirements or contain a subset which does, 

and one region containing points which do not satisfy the 
dependability requirements. 

Proof. Three distinct types of points exist: points beneath 
the surface in the region which does not satisfy reliability 
constraints, points on the surface dividing points which 
satisfy reliability constraints from those which do not, and 
points above the surface in the region which contains 
combinations that satisfy reliability constraints. Points below 
the surface can be dismissed trivially since they do not satisfy 
the dependability constraints. Any point K above the surface 
satisfies dependability constraints or contains a subset which 
does, but can be dismissed since there is at least one other 
point L which satisfies the dependability constraints with at 
least one component of at least one type fewer. Point L has a 
lower cost than point K ,  since all costs are positive. Thus the 
minimum cost point being sought must be located on the 
surface defining the set of points which satisfy the reliability 
requirements. 

3 NON-MONOTONE AND MONOTONE HEURISTIC 
SEARCH ALGORITHMS 

Many search methlods used to navigate solution spaces 
containing local miniima belong to the classes of non- 
monotone and monotone search algorithms (Refs. 6,7). Both 
methods use a fitness function Ax) to determine the relative 
merit of possible solutiolns. Local minima can be the result of 
the feasible set being defined by a non-convex surface, or the 
fitness function being non-linear. Optimization problems 
containing local minima are more difficult than linear 
problems and can not be solved by linear programming. 

The majority of search heuristics start at a point in the 
parameter space and move to neighboring points whose value 
offlx) is inferior to the current value. Both non-monotone 
and monotone methods; occasionally move to points in the 
search space where the value of f lx) ,  the fitness function, is 
superior to the current value. With monotone methods the 
ability to do this is dependent on a strictly decreasing 
parameter, for non-monotone methods it is not. 

Monotone methods include simulated annealing (see 
section 3.2) and threshold acceptance. Monotone methods 
avoid local minima by occasionally moving to a neighboring 
point whose value offix) is superior to the current value. The 
amount of increase that will be accepted by the method can be 
either probabilistic (siimulated annealing) or deterministic 
(threshold acceptance) and is dependent on a parameter 
whose value decreases ais the search progresses (Refs 6,7). 
3.1 Tabu Search 

Tabu search is non-monotone in that it disqualifies a 
number of moves due ito the history of moves made by the 
algorithm (Ref. 6). We use Tabu search since it is the most 
widely implemented heuristic of this class. Tabu search 
modifies an existing heuristic by keeping a list of the nodes in 
the search space visited most recently by the search. These 
points become "tabu" in that they are not revisited while they 
are on the list. This allows an algorithm to climb out of local 
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minima. Our implementation uses a tabu list that is 
practically infinite. 

To go from point A to global minimum at point E, the search needs to 
escape from local minima such as point C. 

or subtracting 1 component from any xi (21 i 3. A 
negative number of components is not allowed. If any 
neighbor is on the tabu list set the value of Jlx) for that 
neighbor to a prohibitively large value. 

Step 4: Set Current-Conf to the neighbor with the smallest 
Ax) value. 

Step 5. If flCurrent-Conf) c flLow-Con. then Low-Conf 

Step 6. Append Current-Conf to tabu list. 
= X  

end for loop. 
Step 7. return(low-Confi 

D(6.1) 

Figure 3 illustrates the problem. A greedy heuristic starts 
at A, moves to B and then C due to the decreasing values. All 
neighbors of C have larger values. Point C is a local minima 
and a greedy heuristic would return C (3.0) as the minimum. 
This is incorrect as the minimum value is at E (2.6). Tabu 
search puts points visited on a list and forbids movement to 
these points. At C the tabu list is {A,B,C) and the only 
neighbor not in the tabu list is D. From D, tabu search moves 
directly to the global minimum E. 

The tabu search used here relies on a "greedy" heuristic 
and starts with the lowest cost configuration of only one 
component type. The algorithm evaluates the cost of each 
neighboring configuration using the fitness function. The 
search moves to the configuration with the minimum value 
for the fitness functionflx). When a configuration is visited it 
is placed on the tabu list, should the search return to its 
neighborhood later, the fitness function is set to a large value. 
As each configuration is visited, the value of the fitness 
function is compared to the smallest value found up to that 
point. If the value is smaller, the configuration becomes the 
best f i t  found. Figure 4 presents pseudocode for this tabu 
search. 
Algorithm: tabu-search 
Inputs: J ,  di for 1 5 i I J ,  ci for 1 5 i 5 J ,  and D. 
Outputs: Vector L of length J with the minimum cos1 
dependable configuration. 
Procedure: 

Step 1: Compute Ni, 1 5 i 5 J .  Note, Ni is the number of 
components of type i needed to meet requirement D when 
no components of another type are used. 

XI = N I  xi = 0 ,  2 1 i < J  
LOw-Conf = (x l ,x2  ,... JJ) Current-Conf = (xI,xZ ,... ,xJ) 

Step 3: Computeffx) for all W neighbors of Current-Conf: 
A neighbor is a configuration which is made by adding 

Step 2: Sort component types in increasing order of Ni*ci. 

For I := 1 to N do /* N isdetermined experimentally */ 

XI refers to the number of components of type one in the 
configuration. Type 1 always refers to the component which 
can be used alone to create the lowest cost configuration. This 
is the lowest cost solo configuration. The value of x I  is the 
smallest number of components of type 1 needed with the 
values of x2, x3, ..., XJ to create a configuration which fulfills 
dependability constraints. The fitness function Ax) refers to 
equation (3). Since no clear stopping criteria exists, this study 
compared the results from a given number of iterations of the 
tabu search with the results obtained by performing a 
simulated annealing which ran until completion. 

3.2 Simulated Annealing 

Simulated annealing attempts to find optimal answers in 
a manner analogous to the formation of crystals in cooling 
solids. A material heated beyond a certain point will become 
fluid, if the fluid is cooled slowly the material will form 
crystals and revert to a minimal energy state. Refer to Ref. 12 
for a full description of simulated annealing and a discussion 
of its scientific basis. 

The strategy of the algorithm is again based on a$tness 
function comparing the relative merit of various points in  the 
problem space. We use the same solution space, same starting 
point and fitness function with tabu search and simulated 
annealing. From the algorithm's current position a 
neighboring point is chosen at random. The cost difference 
between the new point and the current point is calculated. 
This difference is used together with the current system 
temperature to calculate the probability of the new position 
being accepted. This probability is given by the distribution e- 

The process continues with the same temperature z for 
either a given number of iterations, or until a given number 
of positions have been occupied, at which time the value z is 
decreased. The temperature decreases until no transitions are 
possible, so the system remains frozen in one position. This 
occurs only when AC is positive for all neighboring points, 
therefore the position must be a local minimum and may be 
the global minimum (Ref. 19). 

The simulated annealing method used is based on the 
algorithm given in (Refs 12,19). The algorithm has been 
modified so that the problem space and fitness function are 
appropriate. A cooling schedule has been found which allows 
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the algorithm to converge to a reasonable solution. Several 
possible cooling schedules exist. A cooling schedule is 
defined by the initial temperature, the number of iterations 
performed at each temperature, the number of position 
modifications allowed at a given temperature and the rate of 
decrease of the temperapre. The answers found by the 
algorithm are directly dependent on the cooling schedule. 
Note, there does not exist a definite rule for defining the 
chedule (Refs 12,19). 
dgorithm: simulated-annealing 
nputs: J ,  di for 1 I i I J ,  ci for 1 I i I J ,  and D. 
Iutputs: Vector L of length J with the minimum cost 
ependable configuration. 
'rocedure: 
)tep 1: Compute Ni, 1 5.i I J .  Note, Ni is the number o 

components of type i needed to meet requirement D whei 
no components of another type are used. 

ltep 2: Sort component types in increasing order of Ni*ci. 
ltep 3: CC = ( N I ,  0, ...., 0)  

ltep 4: CC-mod = 1 

/* Initial position */ 
/* Initial temperature */ 

step4jter = 0 
t =  1.0 

While (CC-mod not = 0)  and 
(step4jter e maximum number for step 4) do 

begin 
CC-mod = 0 inner-loop-iter = 0 
While(CC-mod e maximum number of transitions) and 

(inner-loop-iter e maximum number for inner loop) 
do begin 

XI = number of components of type 1 needed to 

CC = CC with first position XI 

new-CC = random modification of CC 
xz  = number of components of type 1 needed to 

fulfill the dependability constraint for CC 

fulfill the dependability constraint for 
new-CC 

new-CC = new-CC with first position XI 

AC = cost(CC) - cost(new-C(7) 
if(AC < 0) then 

begin 
CC = new-CC 
CC-mod = CC-mod + 1 

end 
else following Boltzmann distribution of AC and z 

do begin 
CC = new-CC CC-mod = CC-mod + 1 

end 
inner-loopjter = inner-loop-iter + 1 

end 
z = 0.9 * z step4-iter = step4jter + 1 

end 
Step 5: Output CC as the minimal cost configuration . 
Zigure 5 Pseudo-code for cost minimization with simulate 
annealing. 

The cooling schedule used i n  this application started 
with a temperature of 1 .O which decreased at a rate of 10%. 
The total number of iterations at a given temperature was 
limited to 100 * J ,  and the maximum number of positions 
visited at a given temperature was 10 * J .  

The cooling schedule is important since i t  determines the 
rate of convergence of the algorithm and the quality of the 
results. New configurations are generated randomly from the 
current configuration. In choosing a new configuration each 
position in  the vector had a 40% chance of being modified. 
Those positions chosen for modification had a 25% chance of 
being incremented, a 25% chance of being decremented, and 
a 50% chance of staying the same. 

Figure 6 Cost versus Components of types 2 and 3. 

4. EXPERIMENTAL RESULTS 

Figure 6 shows the shape of the search space found by 
using an exhaustive search algorithm on a sample problem 
consisting of three component types. Note the jagged nature 
of the search space and the large number of local minima 
present. This illustrates the non-linear nature of the problem 
and the need for using heuristics which are resistant to local 
minima. 

]Example 1: 
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Example 1 is a test case of multiple dimensions used to 
test the tabu search and simulated annealing approaches to 
this problem. It has eight dimensions. The number of 
dimensions was kept relatively small to allow the use of an 
exhaustive search algorithm to verify the global minimum. 
Tabu search and simulated annealing both succeeded in 
finding the global minimum. Tabu search also found the 
optimal answers but suffers from lacking a clear stopping 
criteria. While these results are positive, it should be noted 
that both heuristics can not be guaranteed to provide the 
globally optimal answer. 

5.  DISCUSSION 

The methods described in this paper are useful for 
finding system configurations for high reliability systems 
made up of individual components and relying on fault 
masking. They use equation (2) to verify that the system 
fulfills dependability constraints when component failures are 
statistically independent. An example has been given to 
illustrate how this methodology can be put into practice and 
result in cost savings. 

Note that example 1 has provided savings of 
approximately 20% compared to the lowest cost solo 
configuration. This is a sizable improvement, whether cost is 
defined as dollar amounts or component weight. The dual 
problem of the problem studied here, maximizing system 
reliability within fixed cost or weight bounds, is equally 
important and can be solved by switching the cost function 
and constraint functions proposed in this article. In our tests, 
simulated annealing performed remarkably well and appears 
to be the methodology best suited to solving the problem. A 
reasonable approach would be to use both approaches to 
verify the results found. 

It should be noted, however, that tabu search and 
simulated annealing both have drawbacks. Tabu search has 
no clear stopping criteria. Both methods are relatively 
insensitive to the presence of local minima in the search 
space. With simulated annealing this insensitivity is partially 
obtained by the creative application of nondeterminism. This 
nondeterminism also means that the quality of the answers 
found by the algorithms will vary from case to case. It is also 
impossible to know how long either algorithm will need to 
find the global minima, or if it will ever find the global 
minima. 
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